357 research outputs found

    Cosmology and Hierarchy in Stabilized Warped Brane Models

    Get PDF
    We examine the cosmology and hierarchy of scales in models with branes immersed in a five-dimensional curved spacetime subject to radion stabilization. When the radion field is time-independent and the inter-brane spacing is stabilized, the universe can naturally find itself in the radiation-dominated epoch. This feature is independent of the form of the stabilizing potential. We recover the standard Friedmann equations without assuming a specific form for the bulk energy-momentum tensor. In the models considered, if the observable brane has positive tension, a solution to the hierarchy problem requires the presence of a negative tension brane somewhere in the bulk. We find that the string scale can be as low as the electroweak scale. In the situation of self-tuning branes where the bulk cosmological constant is set to zero, the brane tensions have hierarchical values. In the case of a polynomial stabilizing potential no new hierarchy is created.Comment: Version to appear in PL

    4D gravity localized in non Z_2-symmetric thick branes

    Full text link
    We present a comparative analysis of localization of 4D gravity on a non Z_2-symmetric scalar thick brane in both a 5-dimensional Riemannian space time and a pure geometric Weyl integrable manifold. This work was mainly motivated by the hypothesis which claims that Weyl geometries mimic quantum behaviour classically. We start by obtaining a classical 4-dimensional Poincare invariant thick brane solution which does not respect Z_2-symmetry along the (non-)compact extra dimension. The scalar energy density of our field configuration represents several series of thick branes with positive and negative energy densities centered at y_0. The only qualitative difference we have encountered when comparing both frames is that the scalar curvature of the Riemannian manifold turns out to be singular for the found solution, whereas its Weylian counterpart presents a regular behaviour. By studying the transverse traceless modes of the fluctuations of the classical backgrounds, we recast their equations into a Schroedinger's equation form with a volcano potential of finite bottom (in both frames). By solving the Schroedinger equation for the massless zero mode m^2=0 we obtain a single bound state which represents a stable 4-dimensional graviton in both frames. We also get a continuum gapless spectrum of KK states with positive m^2>0 that are suppressed at y_0, turning into continuum plane wave modes as "y" approaches spatial infinity. We show that for the considered solution to our setup, the potential is always bounded and cannot adopt the form of a well with infinite walls; thus, we do not get a discrete spectrum of KK states, and we conclude that the claim that Weylian structures mimic, classically, quantum behaviour does not constitute a generic feature of these geometric manifolds.Comment: 13 pages, 4 figures, JHEP forma

    On Tunnelling In Two-Throat Warped Reheating

    Full text link
    We revisit the energy transfer necessary for the warped reheating scenario in a two-throat geometry. We study KK mode wavefunctions of the full two-throat system in the Randall--Sundrum (RS) approximation and find an interesting subtlety in the calculation of the KK mode tunnelling rate. While wavepacket tunnelling is suppressed unless the Standard Model throat is very long, wavefunctions of modes localized in different throats have a non-zero overlap and energy can be transferred between the throats by interactions between such KK modes. The corresponding decay rates are calculated and found to be faster than the tunnelling rates found in previously published works. However, it turns out that the imaginary parts of the mode frequencies, induced by the decay, slow the decay rates themselves down. The self-consistent decay rate turns out to be given by the plane wave tunnelling rate considered previously in the literature. We then discuss mechanisms that may enhance the energy transfer between the throats over the RS rates. In particular, we study models in which the warp factor changes in the UV region less abruptly than in the RS model, and find that it is easy to build phenomenological models in which the plane wave tunnelling rate, and hence the KK mode interaction rates, are enhanced compared to the standard RS setup.Comment: 27 pages + appendices, 5 figures, latex. v2: Discussion of decay in Section 4 changed: the most dangerous graviton amplitudes are zero, the results are now more positive for the warped reheating scenario; typos fixed, discussion cleaned up. v3:corrections in Section 5 (decay rates slowed down), mild changes of overall conclusion

    Flowing to four dimensions

    Full text link
    We analyze the properties of a model with four-dimensional brane-localized Higgs type potential of a six dimensional scalar field satisfying the Dirichlet boundary condition on the boundary of a transverse two-dimensional compact space. The regularization of the localized couplings generates classical renormalization group running. A tachyonic mass parameter grows in the infrared, in analogy with the QCD gauge coupling in four dimensions. We find a phase transition at a critical value of the bare mass parameter such that the running mass parameter becomes large in the infrared precisely at the compactification scale. Below the critical coupling, the theory is in symmetric phase, whereas above it spontaneous symmetry breaking occurs. Close to the phase transition point there is a very light mode in the spectrum. The massive Kaluza-Klein spectrum at the critical coupling becomes independent of the UV cutoff.Comment: 22 pages, LaTe

    Successful Yukawa structures in Warped Extra Dimensions

    Get PDF
    For a RS model, with SM fields in the bulk and the Higgs boson on the TeV-brane, we suggest two specific structures for the Yukawa couplings, one based on a permutation symmetry and the other on the Universal Strength of Yukawa couplings hypothesis (USY). In USY, all Yukawa couplings have equal strength and the difference in the Yukawa structure lies in some complex phase. In both scenarios, all Yukawa couplings are of the same order of magnitude. Thus, the main features of the fermion hierarchies are explained through the RS geometrical mechanism, and not because some Yukawa coupling is extremely small. We find that the RS model is particularly appropriate to incorporate the suggested Yukawa configurations. Indeed, the RS geometrical mechanism of fermion locations along the extra dimension, combined with the two Yukawa scenarios, reproduces all the present experimental data on fermion masses and mixing angles. It is quite remarkable that in the USY case, only two complex phases of definite value +-Pi/2 are sufficient to generate the known neutrino mass differences, while at same time, permitting large leptonic mixing in agreement with experiment.Comment: 11 page

    Variable-Speed-of-Light Cosmology from Brane World Scenario

    Get PDF
    We argue that the four-dimensional universe on the TeV brane of the Randall-Sundrum scenario takes the bimetric structure of Clayton and Moffat, with gravitons traveling faster than photons instead, while the radion varies with time. We show that such brane world bimetric model can thereby solve the flatness and the cosmological constant problems, provided the speed of a graviton decreases to the present day value rapidly enough. The resolution of other cosmological problems such as the horizon problem and the monopole problem requires supplementation by inflation, which may be achieved by the radion field provided the radion potential satisfies the slow-roll approximation.Comment: 18 pages, LaTeX, revised version to appear in Phys. Rev.

    AdS/CFT for Four-Point Amplitudes involving Gravitino Exchange

    Full text link
    In this paper we compute the tree-level four-point scattering amplitude of two dilatini and two axion-dilaton fields in type IIB supergravity in AdS5 x S5. A special feature of this process is that there is an "exotic" channel in which there are no singleparticle poles. Another novelty is that this process involves the exchange of a bulk gravitino. The amplitude is interpreted in terms of N = 4 supersymmetric Yang-Mills theory at large 't Hooft coupling. Properties of the Operator Product Expansion are used to analyze the various contributions from single- and double-trace operators in the weak and strongly coupled regimes, and to determine the anomalous dimensions of semi-short operators. The analysis is particularly clear in the exotic channel, given the absence of BPS states.Comment: 32 pages, 1 figure. Published Version. Minor change

    Origami World

    Full text link
    We paste together patches of AdS6AdS_6 to find solutions which describe two 4-branes intersecting on a 3-brane with non-zero tension. We construct explicitly brane arrays with Minkowski, de Sitter and Anti-de Sitter geometries intrinsic to the 3-brane, and describe how to generalize these solutions to the case of AdS4+nAdS_{4+n}, n>2n>2, where nn n+2n+2-branes intersect on a 3-brane. The Minkowski and de Sitter solutions localize gravity to the intersection, leading to 4D Newtonian gravity at large distances. We show this explicitly in the case of Minkowski origami by finding the zero-mode graviton, and computing the couplings of the bulk gravitons to the matter on the intersection. In de Sitter case, this follows from the finiteness of the bulk volume. The effective 4D Planck scale depends on the square of the fundamental 6D Planck scale, the AdS6AdS_6 radius and the angles between the 4-branes and the radial AdSAdS direction, and for the Minkowski origami it is M42=2/3(tanα1+tanα2)M4L2M_4{}^2 = {2/3} \Bigl(\tan \alpha_1 + \tan \alpha_2 \Bigr) M_*{}^4 L^2. If Mfew×TeVM_* \sim {\rm few} \times TeV this may account for the Planck-electroweak hierarchy even if L104mL \sim 10^{-4} {\rm m}, with a possibility for sub-millimeter corrections to the Newton's law. We comment on the early universe cosmology of such models.Comment: plain LaTeX, 23 pages + 2 .eps figure

    Gravity and Matter in Extra Dimensions

    Full text link
    In this paper, we derive from the viewpoint of the effective 4D theory the interaction terms between linearized gravity propagating in N>= 2 large extra dimensions and matter propagating into one extra dimension. This generalizes known results for the interactions between gravity and 4D matter in ADD-type models. Although we assume that matter is described by an Universal Extra Dimensions (UED) scenario (with all fields propagating into the fifth dimension), we present our results in a general form that can be easily adapted to various other scenarios of matter distribution. We then apply our results to the UED model on a fat brane and consider some phenomenological applications. Among these are the computation of the gravitational decay widths of the matter KK excitations and the effect the width of the brane has on the interactions of gravity with Standard Model particles. We also estimate the cross-section for producing single KK excitations at colliders through KK number-violating gravitational interaction.Comment: 21 pages, 6 figures, Late

    Critical Statistical Charge for Anyonic Superconductivity

    Full text link
    We examine a criterion for the anyonic superconductivity at zero temperature in Abelian matter-coupled Chern-Simons gauge field theories in three dimensions. By solving the Dyson-Schwinger equations, we obtain a critical value of the statistical charge for the superconducting phase in a massless fermion-Chern-Simons model.Comment: 11 pages; to appear in Phys Rev
    corecore